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1. Introduction and main results

In [1] integrability emerged once again [2] in the study of superconformal gauge theories.

In this work Minahan and Zarembo wrote down a set of five Bethe equations yielding

the complete 2-loop spectrum of the three dimensional superconformal SU(N) × SU(N)

Chern-Simons theory recently proposed by Aharony, Bergman, Jafferis and Maldacena [3]

following [4]. This theory was conjectured [3] to be the effective theory for a stack of

M2 branes at a Zk orbifold point. In the large N limit, the gravitational dual becomes

M-theory on AdS4 × S7/Zk. For large k and N with

λ = N/k ≡ 8g2 (1.1)

fixed, the dual theory becomes type IIA superstring theory in AdS4 × CP 3. For subse-

quent interesting works see [5, 6, 1, 7, 8]. In [7, 8] the superstring coset sigma model was

constructed and shown to be the classically integrable.

In this paper we present the algebraic curve construction for the AdS4/CFT3 duality

at weak and strong coupling. The curves we present encode the full 2-loop spectrum of

long single trace gauge invariant operators in the ABJM Chern Simons theory and the

complete classical motion of free type IIA superstring theory in AdS4 × CP 3. The curve

for the AdS5/CFT4 Maldacena duality was considered in [9 – 14].

For the string side we have a supercoset sigma model whose target space is

OSp(2, 2|6)
SO(3, 1) × SU(3) × U(1)

(1.2)
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which has AdS4 × CP 3 as its bosonic part. The algebraic curve construction allows us to

map each classical solution to a corresponding Riemann surface which encodes an infinite

set of conserved charges particular to the classical solution in study. The map goes as

follows. Given a classical solution we can diagonalize the monodromy matrix

Ω(x) = P exp

∫

γ
dσJσ(x) (1.3)

where J(x) is the flat connection, present for integrable theories and computed for the

model in study in [7, 8] and for the AdS5 × S5 superstrings in [15], x is an arbitrary

complex number called spectral parameter and the integration path is a loop at constant

τ . The eigenvalues of the monodromy matrix (as of any generic matrix) live in a Riemann

surface whose size is roughly speaking the size of the matrix1. In our case, we will see

that the logarithms of these eigenvalues (called quasi-momenta) can be organized into a

10-sheeted Riemann surface whose properties are listed below. Due to the flatness of the

connection, the quasi-momenta do not depend on τ and thus they encode an infinite set of

conserved charges (see the next section for details).

Turning the logic around, the algebraic curve construction allows one to trade the study

of the intricate non-linear equations of motion by the construction of Riemann surfaces with

prescribed analytical properties, a well developed subject in algebraic geometry.

To illustrate what we mean let us describe the algebraic curve studied in this paper. To

find the complete classical spectrum of the theory we should proceed as follows: we should

build ten-sheeted Riemann surfaces2 whose branches, called quasi-momenta, depend on a

spectral parameter x ∈ C and are denoted by {q1, q2, q3, q4, q5, q6, q7, q8, q9, q10}. They are

not independent but rather {q1, q2, q3, q4, q5} = {−q10,−q9,−q8,−q7,−q6}. These Riemann

surfaces must obey the following analyticity properties:

1. Generically square root cuts may connect different pairs of sheets. When going

through each cut the quasi-momenta might gain a multiple integer of 2π,

q+
i − q−j = 2πnij , x ∈ Cij (1.4)

where the superscript ± indicates the function is evaluated immediately above/below

the square root cut. The set of integers {nij} characterize the several cuts of the

Riemann surface, i.e. they are are moduli of the algebraic curve.

2. Each cut is also parametrized by a filling fraction

Sij =
g

πi

∮

Cij

dx

(

1 − 1

x2

)

qi(x) (1.5)

which roughly speaking measures how big the cut is. (From the point of view of the

classical solutions these are the action variables.)

1For some matrices, such as for example elements of SO(2N + 1), some eigenvalues might be trivial.
2Actually as will become clear latter the quasi-momenta define an infinite genus curve and to obtain a

ten-sheeted Riemann surface we should take for example the derivative of this quasimomenta w.r.t. x.
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Figure 1: Full AdS4×CP 3 algebraic curve in the 10 representation. Poles uniting AdS4 and CP 3

quasimomenta are fermionic excitations. Regions which are trivially related are painted with the

same colour. Poles at x = ±1 are marked by black filled circles. The OSp(2, 2|6) emerges naturally.

Notice that the black dots denoting the poles at x = ±1 disappear as we jump through the last two

Dynkin nodes, whose Dynkin labels are non-zero. This is precisely as expected — Bethe equations

are the difference of quasimomenta and therefore this pattern reflects the SU(N)×SU(N) staggered

spin chain of Minahan and Zarembo [1] with two momentum carrying nodes.

3. The quasi-momenta must behave as
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(1.6)

close to the singular points x = ±1. The constant α± has no significance from the

target space point of view, the only thing we should keep in mind is that the residues

must be synchronized (Physically this is a manifestation of the Virasoro constraints

imposed on the classical solutions).
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4. The curve should possess the inversion symmetry
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(1.7)

with m ∈ Z.

5. The large x asymptotics of the Riemann surface read3
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
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



. (1.8)

If we enumerate all possible curves with these properties then it suffices to evaluate the

quasimomenta at large values of the spectral parameter to obtain the energy spectrum of

all classical string solutions as a function of the global charges and of the several moduli

of the algebraic curve.

Notice that each cut of the algebraic curve is characterized by a discrete label (i, j),

corresponding to the two sheets being united, an integer n, the multiple of 2π mentioned

above, and a real filling fraction. These three quantities are the analogues of the polar-

ization, mode number and amplitude of the flat space Fourier decomposition of a given

classical solution.

This provides us with clear geometrical picture of semi-classical quantization in the

context of these algebraic curves [16]. Namely a classical solution will be represented

as some algebraic curve with same large cuts uniting several pairs of sheets. Quantum

fluctuations correspond to adding small singularities — microscopic cuts or poles — to this

Riemann surface [16]. The different choices of sheets to be connected in this way correspond

to the different string polarizations we can excite. We will exemplify this procedure on the

example of the simplest classical solution — the BMN [17] string studied in the present

framework in [6]. This method can be easily generalized to more complicated solutions and

to the study of the ground state energy around any classical solution [18].

In the next section we will derive the above mentioned results and explain the con-

struction of the Superstring algebraic curve. In section 3 the gauge theory side of the

AdS4/CFT3 duality is analyzed: We construct the CFT algebraic curve encoding the spec-

trum of all long single trace operators at leading order in perturbation theory (2-loops).

3The state labeled by (Mu, Mr, Mv) belongs to the SU(4) representation with Dynkin labels [L−2Mu +

Mr, Mu + Mv − 2Mr, L − 2Mv + Mr]
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2. String algebraic curve

In this paper we construct the algebraic curve for free type IIA superstrings in AdS4/CP 3.

We could use the flat connection in [7, 8] which, superficially, has the same form as that

found by Benna Polchinki and Roiban for the AdS5 × S5 strings [15]. Armed with the

experience of what happens in the AdS5/CFT4 duality [9, 14, 16] we follow a shortcut4.

We shall use the purely bosonic part of the action to compute the CP 3 and the AdS4

algebraic curves. They will be coupled solely by the Virasoro constraints. Then, to lift

the classical bosonic curve to the complete semi-classical curve for the full super group,

we will simply allow the several sheets of the two curves to be connected by further small

cuts or poles. Such poles connecting CP 3 sheets AdS4 sheets correspond to the missing

fermionic excitations.

Technically, our treatment is very similar to the one in [11] where the SO(6) bosonic

string was studied and the generalization to SO(2n) was presented. This is not surprising

since OSp(2, 2|6) is not very different from SO(10).

2.1 Bosonic flat connection

The bosonic part of the AdS4/CP 3 type IIA free superstring theory reads

S =
√

2λ

∫

dσdτ (LCP 3 + LAdS4) (2.1)

where

LAdS4 = −1

4
(∂µn · ∂µn − Λ (n · n − 1)) , (2.2)

and

LCP 3 = (Dµz)† · Dµz − Λ′
(

z† · z − 1
)

. (2.3)

Here n and z are vectors made out of the embedding coordinates of the anti de-Sitter and

the projective space. Thus

n = (n1, . . . , n5) , n · n = n2
1 + n2

2 − n2
3 − n2

4 − n2
5 (2.4)

with ni real while

z = (z1, . . . , z4) , z† · z = |z1|2 + · · · + |z4|2 (2.5)

where zI are complex numbers. In what follows whenever the index structure is obvious we

omit it. The zI are also identified up to a phase, zI ≃ eiϕzI . This U(1) gauge symmetry

is accounted by the gauge field Aµ appearing in

Dµz = ∂µz + iAµz . (2.6)

The equations of motion for the connection yield z · (Dµz)† − (Dµz) · z† = 0 while the

constrain ∂µ(z† · z) = 0 yields z · (Dµz)† + (Dµz) · z† = 0 and therefore, on-shell, we

have separately

(Dµz) · z† = z ·
(

Dµz†
)

= 0 . (2.7)

4Of course, if we would proceed as in [14] using the full flat connection in [7, 8] we would find exactly

the same results, as can be easily checked.
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Analogously, for the n field we have

n · (∂µn) = 0 . (2.8)

Next it is useful to introduce the element

h =

(

1 − 2 z† ⊗ z

1 − 2n ⊗ n

)

⇔ hAB =

(

δJ
I − 2 z†Iz

J

δij − 2ninj

)

, (2.9)

and the connection

j = h−1dh ≡
(

jAdS

jCP

)

. (2.10)

It is easy to see that when z† · z = n · n = 1 and (2.7), (2.8) hold we have

jAB = 2

(

ni (∂µnj) − (∂µni)nj

z†I (Dµz)J − (Dµz)†I zJ

)

(2.11)

and the action can be written using this current as

S = −g

4

∫

dσdτ STrOSp

(

j2
µ

)

. (2.12)

where5

STrOSp

(

j2
)

≡ −1

2
Tr
(

j2
AdS

)

+ 2Tr
(

j2
CP

)

(2.13)

Note also that the Virasoro constraint now implies

STrOSp (j1 ± j0)
2 = 0 . (2.14)

Furthermore we have the flatness condition

dj + j ∧ j = 0 , (2.15)

following from the expression (2.10) of the connection, and the conservation

d ∗ j = 0 , (2.16)

which is equivalent to the equations of motion for both the n and the z field. These two

equations follow from the flatness condition for the Lax connection

J(x) =
j + x ∗ j

1 − x2
(2.17)

5This definition is motivated by the relations between quadratic Casimirs for SO(5), Sp(4) and

SU(4), SO(6)

TrSO(5)(j
2) = 2TrSp(4)(j

2) , TrSU(4)(j
2) =

1

2
TrSO(6)(j

2)

– 6 –
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as can be easily checked by collecting powers of x in dJ(x)+J(x)∧J(x). The new variable

x appearing in (2.17) is a completely arbitrary complex number called spectral parameter.

Using this flat connection we can build the monodromy matrix

Ω(x) = P exp

∫

dσJσ(x) (2.18)

where we integrate over a constant τ worldsheet loop. At this point integrability comes into

stage. The connection being flat, the eigenvalues of the monodromy matrix are independent

of τ . Since, moreover, they depend on a generic complex number x they define an infinite

set of conserved charges. For example, each coefficient in the taylor expansion of the

eigenvalues around a particular point x∗ is a conserved charge. The existence of this large

number of conserved charges render the sigma model (at least classically) integrable6.

We want to study the algebraic curve construction for this integrable model. This will

map each classical string solution to a Riemann surface with precise analytical properties.

The study of classical solutions in AdS4×CP 3 can then be reduced to the problem of making

a catalogue of all Riemann surfaces compatible with prescribed analytical properties.

2.2 The AdS4 × CP 3 algebraic curve

In this section we study the eigenvalues of the monodromy matrix (2.18). We will first

consider purely bosonic solutions and work out the full supercurve in the next section.

From (2.17) and (2.10) we see that the flat connection J(x) is explicitly block diagonal and

thus the eigenvalues of the monodromy matrix will split into two groups: The eigenvalues

coming from the CP 3 part

{eip̃1 , . . . , eip̃4} , (2.19)

and those coming from the diagonalization of the AdS block,

{eip̂1 , . . . , eip̂4 , 1} . (2.20)

Moreover, from the fact that each of the blocks in (2.11) is manifestly traceless we get

p̃1(x) + · · · + p̃4(x) = 0 , (2.21)

and

p̂3(x) + p̂2(x) = 0 = p̂4(x) + p̂1(x) . (2.22)

To find the eigenvalues of the monodromy matrix we solve a polynomial characteristic

equation. This defines a algebraic curve for the eigenvalues λ. Thus, the eigenvalues can

the thought of as different branches of the same Riemann surfaces with square root cuts

uniting the several sheets. For example when crossing a cut C shared by the eigenvalues

eip̂1 and eip̂2 we simply change Riemann sheet,
(

eip̂2

)+

−
(

eip̂1

)−
= 0 , x ∈ C (2.23)

6Quantum integrability is of course a more subtle matter. In particular, a quantum anomaly for the

bosonic CP 3 sigma-model is known to exist and break down integrability for this theory. In any case, we

will consider the semi-classical quantization of the full super-string where supersymmetry will most likely

ensure integrability at the quantum level.

– 7 –
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where the superscript ± indicates the function is evaluated immediately above/below the

cut. The quasi-momenta, on the other hand, are the logarithms of the eigenvalues. Thus

when crossing the very same cut they will in general also gain an integer multiple of 2π,

p̂+
2 − p̂−1 = 2πn , x ∈ C . (2.24)

Generically we can have several cuts uniting different pairs of sheets and

p+
i − p−j = 2πn , x ∈ Cij , (2.25)

on each cut connecting two quasimomenta pi and pj. To parametrize each cut we also

introduce the usual filling fractions

Ŝij =
g

2πi

∮

Cij

dx

(

1 − 1

x2

)

p̂i(x) , S̃ij =
g

πi

∮

Cij

dx

(

1 − 1

x2

)

p̃i(x) (2.26)

for the cuts uniting pi and pj. Each cut of the algebraic curve is characterized by a discrete

label (i, j), corresponding to the two sheets being united, an integer n, the multiple of

2π mention above, and a real filling fraction. These three quantities are the analogues of

the polarization, mode number and amplitude of the flat space Fourier decomposition of a

given classical solution.

The study of the analytical properties of the quasi-momenta follows closely the analysis

done in the context of the AdS5/CFT4 duality in [14]. Let us enumerate all these properties

and then explain their origin.

For large values of the spectral parameter, the quasimomenta behave as

(p̂1, p̂2, p̂3, p̂4) ≃ 1

gx
(L + E,S,−S,−L − E) , (2.27)

(p̃1, p̃2, p̃3, p̃4) ≃ 1

2gx
(L − Mu,Mu − Mr,Mr − Mv,−L + Mv) ,

for a state belonging to the SU(4) representation with Dynkin labels [L− 2Mu +Mr,Mu +

Mv − 2Mr, L − 2Mv + Mr] (which should be positive).

There are two simple poles at x = ±1 which are synchronized between the AdS4 and

the CP 3 quasi-momenta,

(p̂1, p̂2, p̂3, p̂4; p̃1, p̃2, p̃3, p̃4) ≃
1

x ± 1

(

α±, 0, 0,−α±;
α±
2

, 0, 0,−α±
2

)

, (2.28)

and finally the algebraic surface exhibits a x → 1/x inversion symmetry under which

p̂1(1/x) = −p̂1(x)

p̂2(1/x) = +p̂2(x)

p̂3(1/x) = +p̂3(x)

p̂4(1/x) = −p̂4(x)

,

p̃1(1/x) = p̃4(x) + 2πm

p̃2(1/x) = p̃2(x)

p̃3(1/x) = p̃3(x)

p̃4(1/x) = p̃1(x) − 2πm

. (2.29)

where m is an integer which depends on the classical solution to which these quasi-momenta

are associated.

– 8 –



J
H
E
P
0
2
(
2
0
0
9
)
0
4
0

Let us now briefly explain the origin of these analytical properties. The fact that

the quasi-momenta encode the global charges of the classical solutions at the x → ∞
asymptotics follows from the large x behavior of the monodromy matrix,

Ω(x) ≃ 1 +
1

x

∫

dσjτ . (2.30)

From the form of the flat connection we see that in general the quasi-momenta can have

simple poles at x = ±1. The reason why only four of them — two in CP 3 and two in AdS4

— have non-vanishing residues follows from the very particular form of the flat connection.

For example for x ≃ 1 we have J(x) ∝ j+ and thus

j+ · v = 0 (2.31)

if v is orthogonal to both z†I , D+z†I , ni and ∂+ni. Following the arguments in [11], this can

be shown to imply that only two CP 3 and two AdS4 quasimomenta have poles. Since (2.21)

and (2.22) we immediately see that the residues at these poles must be symmetric. More-

over the Virasoro constraints STr(j2
µ) = 0 synchronizes the poles in the anti de-Sitter and

projective space as in (2.28) (exactly as in [13]).

Next we notice that h−1 = h. This has important consequences for the algebraic curve.

It implies that

Ω(x) = h−1(2π)Ω(1/x)h(0) (2.32)

and therefore the eigenvalues of the monodromy matrix associated to some closed string

classical solution are at most exchanged between themselves under the inversion map x →
1/x. The precise way in which the quasi-momenta are exchanged is in general a subtle

business [11, 13] and (2.29) is not a trivial relation. For example, a priori from (2.32) it

seems that we could not infer that p̃2(1/x) is not exchanged with p̃3(x). The reason why

this can not happen and the inversion symmetry we postulated is correct is the following:

There are solutions with z1, z2, z3 6= 0 but z4 = 0. For those solutions the last line and

column of the current J(x) is made out of zeros. Thus Ω(x) will have one eigenvalue exactly

equal to 1 and therefore one of the quasimomenta is strictly zero. Since p̃1 and p̃4 have

poles the vanishing quasimomenta must be either p̃2 or p̃3. But then, if for example p̃3 = 0

while the other three quasimomenta are nontrivial then, clearly, p2(1/x) 6= p3(x)! In the

same way we can justify the remaining relations in (2.29)7.

2.3 Full algebraic supercurve

In this section we generalize the classical bosonic algebraic curve described in the previous

section to the semi-classical and supersymmetric OSp(2, 2|6) algebraic curve. The smallest

representation of this symmetry group — which behaves in many aspects as SO(10) — is 10

7As we mentioned in the beginning we could also have constructed the curve using the flat connection

in [7, 8]. The x → 1/x symmetry we just discussed appears in these works as a consequence of the Z4

grading of the superalgebra (see equation at the end of section 4.1 in [8]). In the context of the AdS5×CFT4

correspondence — see [13] — this was also the case. Had we used the flat connections in these works and

we would have found the same inversion symmetry properties.
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dimensional so we should find a nice linear combination of the quasimomenta in the previous

section yielding 10 functions describing a single algebraic curve with manifest OSp(2, 2|6)
symmetry. Then, to include fermions, we simply allow for extra poles between the AdS4

and the CP 3 quasimomenta! A proper linear combination is the following reorganization

of the quasimomenta into a set of ten functions

{q1, q2, q3, q4, q5} =

{

p̂1 + p̂2

2
,
p̂1 − p̂2

2
, p̃1 + p̃2, p̃1 + p̃3, p̃1 + p̃4

}

, (2.33)

and

{q6, q7, q8, q9, q10} = −{q1, q2, q3, q4, q5} . (2.34)

These ten functions can be thought of as the several sheets of a single function taking values

in a ten-sheeted Riemann surface as represented in figure 1. Notice that they organize in

a nice explicitly OSp(2, 2|6) symmetric way. From the properties derived in the previous

section for pi(x) the relations listed in the introduction for qi(x) follow.

Next, to understand the quasi-classical quantization of any classical solution we add

extra pole singularities to the different pairs of sheets of the algebraic curve associated with

the solution we want to quantize. The several pairs of sheets to be connected in figure 1

correspond to the different physical polarizations for the quantum fluctuations. Thus, we

are in need of a map between the several possible excitations of the string Hilbert space (or

of the dual gauge theory) and the several pairs or Riemann surfaces. This map is provided

by figure 2 where we listed all 16 = 8 + 8 physical excitations. The fluctuations were

identified by the corresponding excitations of the OSp(2, 2|6) Dynkin diagram, as in [1].

Since the asymptotics of the curve are also be related to the Dynkin labels of a given state

this suffices to identify which pairs of sheets are connected for each quantum fluctuation.

See [13, 16] for similar analysis in the context of the AdS5/CFT4 duality.

In the next section we will explicitly apply figure 2 to the semi-classical quantization

of the BMN string.

2.4 BMN string

The BMN point-like string has z1 = 1√
2
eiωτ/2, z2 = 1√

2
e−iωτ/2 and n1 + in2 = eiωτ .

Computing the charges of this solution we find

L = 4πg ω = π
√

2λ ω , E = 0 (2.35)

to check that one can use that the AdS5 time is given by −i log(n1 + in2). To compare the

results we will find below with those in [6] we notice that

n2

ω2
=

2π2λn2

L2
. (2.36)

We now plug the embedding coordinates into (2.11) and compute the path ordered exponen-

tial in (2.18). Since the string is point-like there is no σ dependence and this computation
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4AdS

CP3

Fermions

45/67 46/57 35/68 36/58 37/48

25/69 26/59 15/6 16/5

27/49 17/4 28/39 18/3

10 10

10 10

29/29 19/2 1 /110 1010

Figure 2: The several states in the Hilbert space can be constructed in the usual oscillator rep-

resentation. There is one oscillator per Dynkin node of the OSp(2, 2|6) super Dynkin diagram. A

light (dark) gray shaded node corresponds to an oscillator excited once (twice). From the Chern-

Simons Bethe ansatz point of view, the number of times each oscillator is excited is the same as the

number of Bethe roots of the corresponding type. Thus, for example, in the notation of [1], the last

fermionic excitation corresponds to a bound state of one root of each type u, v, w, s and two Bethe

roots r. From the string point of view fluctuations correspond to poles uniting the several sheets of

the algebraic curve. Close to each fluctuation we represented some numbers which indicate which

quasi-momenta are united. For example we have 45/67 for the first fluctuation which means q4 and

q5 share a pole. Since (2.34) automatically q6 and q7 also share a pole.

is trivial. We can then compute the eigenvalues of the monodromy matrix (2.18) and from

them we find the 10 qi’s using (2.33) and (2.34). We obtain

q1,...,4 = −q6,...,10 =
2πωx

x2 − 1
, (2.37)

and

q5,6 = 0 . (2.38)

The BMN string is the simplest possible algebraic curve. It is in fact the vacuum curve,

all sheets are empty except for the two single poles at x = ±1.

We can now exemplify the computation of the quasi-classical spectrum in the algebraic

curve language and reproduce the recent results of [6]. The 16 physical excitations are

represented in figure 2. Notice that the first four CP 3 fluctuations and the last four
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fermionic fluctuations corresponds to poles shared by a quasimomenta in the list (2.37)

with one of the two quasimomenta in (2.38). The position of these fluctuations is given

by [16]

qi(xn) − qj(xn) = 2πn . (2.39)

The integer n is the generalization of the Fourier mode in flat space — it is meaningful

around any classical solution, no matter how non-linear and non-trivial this solution might

be. For the fluctuations we are discussing this equation reads

2πωxn

x2
n − 1

= 2πn , (2.40)

and we should pick the solution in the physical region |x| > 1. On the other hand all the

remaining eight fluctuations connect two quasimomenta in (2.37). Therefore, from (2.39),

we will find that the position of these fluctuations is fixed by

2πωxn

x2
n − 1

= πn . (2.41)

So the position of half of the fluctuations is the same as the position of the other half

with doubled mode number. This already points towards the structure of the fluctuation

energies observed in [6]. We also recall that a fluctuation pole at position y should have a

residue [16]

α(y) =
1

2g

y2

y2 − 1
. (2.42)

We will now consider separately the CP 3, AdS4 and Fermionic excitations to understand

how to compute the fluctuation energies around a classical solution in the algebraic curve

formalism. The computations are conceptually as in [16] so we will simply present the

results for the perturbed quasi-momenta with very few explanations.

A technical detail: When computing the fluctuation spectrum we will add always a

fluctuation with mode number n and another with mode number −n to keep the string

total world-sheet momentum zero in the process8.

2.4.1 CP 3 excitations

There are two types of fluctuations in CP 3: The first four in figure 2 and the fifth one.

The former corresponds to a pole connecting a quasi-momenta in (2.37) with an empty one

in (2.38) whereas the latter corresponds to a pole shared by q3 and q7, both in (2.37). Let

us consider one of the fluctuations of the first type, say the first one in figure 2. For this

8We could alternatively excite all polarizations at the same time while obeying the level

matching condition
X

ij,n

nN ij
n = 0 , (2.43)

with N ij
n being the number of fluctuations with polarization (i, j) and mode number n. This would lead

to the same results but would cluster our expressions. Thus we will chose to add always a single pair of

fluctuations with mode numbers ±n at a time.
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fluctuation

δq3 = −δq8 = +
∑

±

α(1/x)

1/x − x±n
(2.44)

δq4 = −δq7 = −
∑

±

α(x)

x − x±n
(2.45)

δq5 = −δq6 = +
∑

±

α(x)

x − x±n
+
∑

±

α(1/x)

1/x − x±n
(2.46)

δq1,2 = −δq9,10 = +
α(x) δE

x
. (2.47)

so that from the synchronization of poles at x = ±1 we find

δE =
∑

±

1

x2
±n − 1

=
∑

±n

√

1

4
+

n2

ω2
− 1

2
. (2.48)

The fifth fluctuation in CP 3 connects q3 and q7 (and therefore automatically at q4 = −q7

and q8 = −q3). Hence we have

δq4 = −δq7 = −
∑

±

α(x)

x − x±n
+
∑

±

α(1/x)

1/x − x±n
(2.49)

δq3 = −δq8 = −
∑

±

α(x)

x − x±n
+
∑

±

α(1/x)

1/x − x±n
(2.50)

δq1,2 = −δq9,10 = +
α(x) δE

x
. (2.51)

and we find in this case

δE =
∑

±

2

x2
±n − 1

=
∑

±n

√

1 +
n2

ω2
− 1 . (2.52)

These are precisely the results of [6].

2.4.2 AdS4 excitations

Here we must be careful. The first and third AdS4 fluctuations have two excitations in

the last Dynkin node — see figure 2. This means that for those we should double the

residue (2.42). Let us consider the last one for illustration (for the first one we get the

same result of course). We have

δq1 = −δq10 = +
∑

±

2α(xn)

x − x±n
(2.53)

δq2 = −δq9 = −
∑

±

2α(xn)

1/x − x±n
(2.54)

and thus, from the large x asymptotics,

δE =
∑

n=±

x2
n + 1

x2
n − 1

=
∑

±n

√

1 +
n2

ω2
. (2.55)
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As for the middle fluctuation in figure 2, we have

δq1 = −δq10 = +
∑

±

α(xn)

x − x±n
−
∑

±

α(xn)

1/x − x±n
(2.56)

δq2 = −δq9 = +
∑

±

α(xn)

x − x±n
−
∑

±

α(xn)

1/x − x±n
(2.57)

yielding

δE =
∑

n=±

x2
n + 1

x2
n − 1

=
∑

±n

√

1 +
n2

ω2
(2.58)

which is again the same result as found in [6].

2.4.3 Fermionic excitations

As was the case for the CP 3 excitations, here we also have two types of fluctuations, corre-

sponding to the first and second lines in figure 2. We start by considering a representative

of the first line. For example let us focus on a pole from q1 to q5 (and thus automatically

also from q6 to q10). We have

δq1 = −δq10 = +
∑

±

α(xn)

x − x±n
(2.59)

δq5 = −δq6 = −
∑

±

α(xn)

x − x±n
−
∑

±

α(xn)

1/x − x±n
(2.60)

δq2 = −δq9 = −
∑

±

α(xn)

1/x − x±n
(2.61)

giving

δE =
∑

n=±

x2
n + 1

2(x2
n − 1)

=
∑

±n

√

1

4
+

n2

ω2
(2.62)

For a fluctuation in the second line, say the last one, we have

δq1 = −δq10 = −
∑

±

α(xn)

x − x±n
− Ax

2g(x2 − 1)
(2.63)

δq2 = −δq9 = +
∑

±

α(xn)

1/x − x±n
− Ax

2g(x2 − 1)
(2.64)

δq3 = −δq8 = +
∑

±

α(x)

x − x±n
(2.65)

δq4 = −δq7 = −
∑

±

α(1/x)

1/x − x±n
(2.66)

so that pole synchronization gives

A =
∑

±

1

x2
±n − 1

(2.67)
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and then from the large x asymptotics we read the energy shift

δE =
∑

±n

x2
n + 3

2(x2
n − 1)

=
∑

±n

√

1 +
n2

ω2
− 1

2
(2.68)

This completes the computation of the spectrum of the superstring around the BMN clas-

sical solution. All frequencies coincide with those found in [6].

3. Chern-Simons curve

In this section we construct the CS algebraic curve encoding the full 2-loop spectrum of

long single trace gauge invariant operators in the ABJM Chern Simons theory. In the

scaling limit where the Bethe roots scale with the number of spin chain sites, the two loop

Bethe equations in [1] can be recast as [9, 12, 14]

1

z
+ 2πnu = 2 /Gu − Gr (3.1)

1

z
+ 2πnv = 2 /Gv − Gr (3.2)

2πnr = 2 /Gr − Gv − Gu − Gw (3.3)

2πnw = Gr − Gs (3.4)

2πnw = 2 /Gw − Gs (3.5)

In these five equations z belongs to the several disjoint supports where the Bethe roots u,

v, r, s, w condense, respectively. As usual

Gu =

Mu
∑

j=1

1

Lz − uj
, Gv =

Mv
∑

j=1

1

Lz − vj
, . . . (3.6)

and the slash means the average of function above and below the cut resulting from the

condensation of the Bethe roots. In this limit the spin chain can be described by a (super

symmetric) Landau-Lifshitz model and the corresponding algebraic curve can be compared

with the curve described in the previous section. Indeed all the 5 nested Bethe equations

nested can be turned into the statement that the quasimomenta

q1 = −q10 =
1

z
− Gw

q2 = −q9 =
1

z
+ Gw − Gs

q3 = −q8 =
1

z
− Gs + Gr (3.7)

q4 = −q7 =
1

z
− Gr + Gu + Gv

q5 = −q6 = −Gu + Gv

form a ten-sheeted Riemann surface. The several properties of these quasimomenta follow

trivially from the definition of the quasimomenta, see [9 – 14]. This curve can be depicted
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as in figure 1 provided we shrink the unit circle into the origin. The energy of the YM

solutions is then given by

E =
Mu
∑

i=1

λ2

u2
i

+
Mv
∑

i=1

λ2

v2
i

. (3.8)
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