The $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ algebraic curve

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
JHEP02(2009)040
(http://iopscience.iop.org/1126-6708/2009/02/040)
The Table of Contents and more related content is available

Download details:
IP Address: 80.92.225.132
The article was downloaded on 03/04/2010 at 10:42

Please note that terms and conditions apply.

The $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ algebraic curve

Nikolay Gromov ${ }^{a b c}$ and Pedro Vieira ${ }^{b d}$
${ }^{a}$ Service de Physique Théorique, CNRS-URA 2306 C.E.A.-Saclay, F-91191 Gif-sur-Yvette, France
${ }^{b}$ Laboratoire de Physique Théorique, Ecole Normale Supérieure et l'Université Paris-VI, Paris, 75231, France
${ }^{c}$ St. Petersburg INP, Gatchina, 188 300, St. Petersburg, Russia
${ }^{d}$ Departamento de Física e Centro de Física do Porto, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
E-mail: nikgromov@gmail.com, pedrogvieira@gmail.com

Abstract: We present the $\operatorname{OSp}(2,2 \mid 6)$ symmetric algebraic curve for the $A d S_{4} / C F T_{3}$ duality recently proposed in arXiv:0806.1218. It encodes all classical string solutions at strong t'Hooft coupling and the full two loop spectrum of long single trace gauge invariant operators in the weak coupling regime. This construction can also be used to compute the complete superstring semi-classical spectrum around any classical solution. We exemplify our method on the BMN point-like string.

Keywords: AdS-CFT Correspondence, Integrable Field Theories, Chern-Simons Theories, Bethe Ansatz.

Contents

1. Introduction and main results 1
2. String algebraic curve 5
2.1 Bosonic flat connection
2.2 The $A d S_{4} \times C P^{3}$ algebraic curve
2.3 Full algebraic supercurve
2.4 BMN string
2.4.1 $C P^{3}$ excitations 12
2.4.2 $A d S^{4}$ excitations 13
2.4.3 Fermionic excitations 14
3. Chern-Simons curve 15

1. Introduction and main results

In (1] integrability emerged once again [2] in the study of superconformal gauge theories. In this work Minahan and Zarembo wrote down a set of five Bethe equations yielding the complete 2-loop spectrum of the three dimensional superconformal $\operatorname{SU}(N) \times \operatorname{SU}(N)$ Chern-Simons theory recently proposed by Aharony, Bergman, Jafferis and Maldacena [3] following [4]. This theory was conjectured [3] to be the effective theory for a stack of M2 branes at a Z_{k} orbifold point. In the large N limit, the gravitational dual becomes M-theory on $A d S_{4} \times S^{7} / Z_{k}$. For large k and N with

$$
\begin{equation*}
\lambda=N / k \equiv 8 g^{2} \tag{1.1}
\end{equation*}
$$

fixed, the dual theory becomes type IIA superstring theory in $A d S_{4} \times C P^{3}$. For subse-
 constructed and shown to be the classically integrable.

In this paper we present the algebraic curve construction for the $A d S_{4} / C F T_{3}$ duality at weak and strong coupling. The curves we present encode the full 2-loop spectrum of long single trace gauge invariant operators in the ABJM Chern Simons theory and the complete classical motion of free type IIA superstring theory in $A d S_{4} \times C P^{3}$. The curve for the $A d S_{5} / C F T_{4}$ Maldacena duality was considered in (9-14).

For the string side we have a supercoset sigma model whose target space is

$$
\begin{equation*}
\frac{\mathrm{OSp}(2,2 \mid 6)}{\mathrm{SO}(3,1) \times \mathrm{SU}(3) \times \mathrm{U}(1)} \tag{1.2}
\end{equation*}
$$

which has $A d S_{4} \times C P^{3}$ as its bosonic part. The algebraic curve construction allows us to map each classical solution to a corresponding Riemann surface which encodes an infinite set of conserved charges particular to the classical solution in study. The map goes as follows. Given a classical solution we can diagonalize the monodromy matrix

$$
\begin{equation*}
\Omega(x)=P \exp \int_{\gamma} d \sigma J_{\sigma}(x) \tag{1.3}
\end{equation*}
$$

where $J(x)$ is the flat connection, present for integrable theories and computed for the model in study in [7, 8] and for the $A d S_{5} \times S^{5}$ superstrings in (15), x is an arbitrary complex number called spectral parameter and the integration path is a loop at constant τ. The eigenvalues of the monodromy matrix (as of any generic matrix) live in a Riemann surface whose size is roughly speaking the size of the matrix ${ }^{1}$. In our case, we will see that the logarithms of these eigenvalues (called quasi-momenta) can be organized into a 10 -sheeted Riemann surface whose properties are listed below. Due to the flatness of the connection, the quasi-momenta do not depend on τ and thus they encode an infinite set of conserved charges (see the next section for details).

Turning the logic around, the algebraic curve construction allows one to trade the study of the intricate non-linear equations of motion by the construction of Riemann surfaces with prescribed analytical properties, a well developed subject in algebraic geometry.

To illustrate what we mean let us describe the algebraic curve studied in this paper. To find the complete classical spectrum of the theory we should proceed as follows: we should build ten-sheeted Riemann surfaces ${ }^{2}$ whose branches, called quasi-momenta, depend on a spectral parameter $x \in \mathbb{C}$ and are denoted by $\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}, q_{9}, q_{10}\right\}$. They are not independent but rather $\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}=\left\{-q_{10},-q_{9},-q_{8},-q_{7},-q_{6}\right\}$. These Riemann surfaces must obey the following analyticity properties:

1. Generically square root cuts may connect different pairs of sheets. When going through each cut the quasi-momenta might gain a multiple integer of 2π,

$$
\begin{equation*}
q_{i}^{+}-q_{j}^{-}=2 \pi n_{i j}, x \in \mathcal{C}_{i j} \tag{1.4}
\end{equation*}
$$

where the superscript \pm indicates the function is evaluated immediately above/below the square root cut. The set of integers $\left\{n_{i j}\right\}$ characterize the several cuts of the Riemann surface, i.e. they are are moduli of the algebraic curve.
2. Each cut is also parametrized by a filling fraction

$$
\begin{equation*}
S_{i j}=\frac{g}{\pi i} \oint_{\mathcal{C}_{i j}} d x\left(1-\frac{1}{x^{2}}\right) q_{i}(x) \tag{1.5}
\end{equation*}
$$

which roughly speaking measures how big the cut is. (From the point of view of the classical solutions these are the action variables.)

[^0]

Figure 1: Full $A d S_{4} \times C P^{3}$ algebraic curve in the 10 representation. Poles uniting $A d S_{4}$ and $C P^{3}$ quasimomenta are fermionic excitations. Regions which are trivially related are painted with the same colour. Poles at $x= \pm 1$ are marked by black filled circles. The $\operatorname{OSp}(2,2 \mid 6)$ emerges naturally. Notice that the black dots denoting the poles at $x= \pm 1$ disappear as we jump through the last two Dynkin nodes, whose Dynkin labels are non-zero. This is precisely as expected - Bethe equations are the difference of quasimomenta and therefore this pattern reflects the $\mathrm{SU}(N) \times \mathrm{SU}(N)$ staggered spin chain of Minahan and Zarembo [1] with two momentum carrying nodes.
3. The quasi-momenta must behave as

$$
\left(\begin{array}{l}
q_{1}(x) \tag{1.6}\\
q_{2}(x) \\
q_{3}(x) \\
q_{4}(x) \\
q_{5}(x)
\end{array}\right)=-\left(\begin{array}{l}
q_{10}(x) \\
q_{9}(x) \\
q_{8}(x) \\
q_{7}(x) \\
q_{6}(x)
\end{array}\right) \simeq \frac{1 / 2}{x \pm 1}\left(\begin{array}{c}
\alpha_{ \pm} \\
\alpha_{ \pm} \\
\alpha_{ \pm} \\
\alpha_{ \pm} \\
0
\end{array}\right)
$$

close to the singular points $x= \pm 1$. The constant $\alpha_{ \pm}$has no significance from the target space point of view, the only thing we should keep in mind is that the residues must be synchronized (Physically this is a manifestation of the Virasoro constraints imposed on the classical solutions).
4. The curve should possess the inversion symmetry

$$
\left(\begin{array}{l}
q_{1}(1 / x) \tag{1.7}\\
q_{2}(1 / x) \\
q_{3}(1 / x) \\
q_{4}(1 / x) \\
q_{5}(1 / x)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
2 \pi m \\
2 \pi m \\
0
\end{array}\right)+\left(\begin{array}{c}
-q_{2}(x) \\
-q_{1}(x) \\
-q_{4}(x) \\
-q_{3}(x) \\
+q_{5}(x)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
2 \pi m \\
2 \pi m \\
0
\end{array}\right)+\left(\begin{array}{l}
+q_{9}(x) \\
+q_{10}(x) \\
+q_{7}(x) \\
+q_{8}(x) \\
-q_{6}(x)
\end{array}\right)
$$

with $m \in \mathbb{Z}$.
5. The large x asymptotics of the Riemann surface read ${ }^{3}$

$$
\left(\begin{array}{l}
q_{1}(x) \tag{1.8}\\
q_{2}(x) \\
q_{3}(x) \\
q_{4}(x) \\
q_{5}(x)
\end{array}\right)=-\left(\begin{array}{l}
q_{10}(x) \\
q_{9}(x) \\
q_{8}(x) \\
q_{7}(x) \\
q_{6}(x)
\end{array}\right) \simeq \frac{1}{2 g x}\left(\begin{array}{l}
L+E+S \\
L+E-S \\
L-M_{r} \\
L+M_{r}-M_{u}-M_{v} \\
M_{v}-M_{u}
\end{array}\right)
$$

If we enumerate all possible curves with these properties then it suffices to evaluate the quasimomenta at large values of the spectral parameter to obtain the energy spectrum of all classical string solutions as a function of the global charges and of the several moduli of the algebraic curve.

Notice that each cut of the algebraic curve is characterized by a discrete label (i, j), corresponding to the two sheets being united, an integer n, the multiple of 2π mentioned above, and a real filling fraction. These three quantities are the analogues of the polarization, mode number and amplitude of the flat space Fourier decomposition of a given classical solution.

This provides us with clear geometrical picture of semi-classical quantization in the context of these algebraic curves [16]. Namely a classical solution will be represented as some algebraic curve with same large cuts uniting several pairs of sheets. Quantum fluctuations correspond to adding small singularities - microscopic cuts or poles - to this Riemann surface [16]. The different choices of sheets to be connected in this way correspond to the different string polarizations we can excite. We will exemplify this procedure on the example of the simplest classical solution - the BMN [17] string studied in the present framework in [6]. This method can be easily generalized to more complicated solutions and to the study of the ground state energy around any classical solution [18].

In the next section we will derive the above mentioned results and explain the construction of the Superstring algebraic curve. In section 3 the gauge theory side of the $A d S_{4} / C F T_{3}$ duality is analyzed: We construct the CFT algebraic curve encoding the spectrum of all long single trace operators at leading order in perturbation theory (2-loops).

[^1]
2. String algebraic curve

In this paper we construct the algebraic curve for free type IIA superstrings in $A d S_{4} / C P^{3}$. We could use the flat connection in [7, 8 which, superficially, has the same form as that found by Benna Polchinki and Roiban for the $A d S_{5} \times S^{5}$ strings (15]. Armed with the experience of what happens in the $A d S_{5} / C F T_{4}$ duality [9, 14, 16] we follow a shortcut ${ }^{4}$. We shall use the purely bosonic part of the action to compute the $C P^{3}$ and the $A d S_{4}$ algebraic curves. They will be coupled solely by the Virasoro constraints. Then, to lift the classical bosonic curve to the complete semi-classical curve for the full super group, we will simply allow the several sheets of the two curves to be connected by further small cuts or poles. Such poles connecting $C P^{3}$ sheets $A d S_{4}$ sheets correspond to the missing fermionic excitations.

Technically, our treatment is very similar to the one in (11] where the $\mathrm{SO}(6)$ bosonic string was studied and the generalization to $\mathrm{SO}(2 n)$ was presented. This is not surprising since $\operatorname{OSp}(2,2 \mid 6)$ is not very different from $\operatorname{SO}(10)$.

2.1 Bosonic flat connection

The bosonic part of the $A d S_{4} / C P^{3}$ type IIA free superstring theory reads

$$
\begin{equation*}
S=\sqrt{2 \lambda} \int d \sigma d \tau\left(\mathcal{L}_{C P^{3}}+\mathcal{L}_{A d S^{4}}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{L}_{A d S^{4}}=-\frac{1}{4}\left(\partial_{\mu} n \cdot \partial_{\mu} n-\Lambda(n \cdot n-1)\right), \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}_{C P^{3}}=\left(D_{\mu} z\right)^{\dagger} \cdot D_{\mu} z-\Lambda^{\prime}\left(z^{\dagger} \cdot z-1\right) . \tag{2.3}
\end{equation*}
$$

Here n and z are vectors made out of the embedding coordinates of the anti de-Sitter and the projective space. Thus

$$
\begin{equation*}
n=\left(n_{1}, \ldots, n_{5}\right), n \cdot n=n_{1}^{2}+n_{2}^{2}-n_{3}^{2}-n_{4}^{2}-n_{5}^{2} \tag{2.4}
\end{equation*}
$$

with n_{i} real while

$$
\begin{equation*}
z=\left(z^{1}, \ldots, z^{4}\right), z^{\dagger} \cdot z=\left|z^{1}\right|^{2}+\cdots+\left|z^{4}\right|^{2} \tag{2.5}
\end{equation*}
$$

where z^{I} are complex numbers. In what follows whenever the index structure is obvious we omit it. The z^{I} are also identified up to a phase, $z^{I} \simeq e^{i \varphi} z^{I}$. This $\mathrm{U}(1)$ gauge symmetry is accounted by the gauge field A_{μ} appearing in

$$
\begin{equation*}
D_{\mu} z=\partial_{\mu} z+i A_{\mu} z . \tag{2.6}
\end{equation*}
$$

The equations of motion for the connection yield $z \cdot\left(D_{\mu} z\right)^{\dagger}-\left(D_{\mu} z\right) \cdot z^{\dagger}=0$ while the constrain $\partial_{\mu}\left(z^{\dagger} \cdot z\right)=0$ yields $z \cdot\left(D_{\mu} z\right)^{\dagger}+\left(D_{\mu} z\right) \cdot z^{\dagger}=0$ and therefore, on-shell, we have separately

$$
\begin{equation*}
\left(D_{\mu} z\right) \cdot z^{\dagger}=z \cdot\left(D_{\mu} z^{\dagger}\right)=0 . \tag{2.7}
\end{equation*}
$$

[^2]Analogously, for the n field we have

$$
\begin{equation*}
n \cdot\left(\partial_{\mu} n\right)=0 . \tag{2.8}
\end{equation*}
$$

Next it is useful to introduce the element

$$
h=\left(\begin{array}{l|l}
1-2 z^{\dagger} \otimes z & \tag{2.9}\\
\hline & 1-2 n \otimes n
\end{array}\right) \Leftrightarrow h_{A B}=\left(\begin{array}{ll}
\delta_{I}^{J}-2 z_{I}^{\dagger} z^{J} & \\
\hline & \delta_{i j}-2 n_{i} n_{j}
\end{array}\right),
$$

and the connection

$$
j=h^{-1} d h \equiv\left(\begin{array}{l|l}
j_{\mathrm{AdS}} & \tag{2.10}\\
\hline & j_{\mathrm{CP}}
\end{array}\right) .
$$

It is easy to see that when $z^{\dagger} \cdot z=n \cdot n=1$ and (2.7), (2.8) hold we have

$$
\begin{equation*}
j_{A B}=2\left(\frac{n_{i}\left(\partial_{\mu} n_{j}\right)-\left(\partial_{\mu} n_{i}\right) n_{j} \mid}{\mid z_{I}^{\dagger}\left(D_{\mu} z\right)^{J}-\left(D_{\mu} z\right)_{I}^{\dagger} z^{J}}\right) \tag{2.11}
\end{equation*}
$$

and the action can be written using this current as

$$
\begin{equation*}
S=-\frac{g}{4} \int d \sigma d \tau \operatorname{STr}_{\mathrm{OSp}}\left(j_{\mu}^{2}\right) \tag{2.12}
\end{equation*}
$$

where ${ }^{5}$

$$
\begin{equation*}
\operatorname{STr}_{\mathrm{OSp}}\left(j^{2}\right) \equiv-\frac{1}{2} \operatorname{Tr}\left(j_{\mathrm{AdS}}^{2}\right)+2 \operatorname{Tr}\left(j_{\mathrm{CP}}^{2}\right) \tag{2.13}
\end{equation*}
$$

Note also that the Virasoro constraint now implies

$$
\begin{equation*}
\operatorname{STr}_{\mathrm{OSp}}\left(j_{1} \pm j_{0}\right)^{2}=0 \tag{2.14}
\end{equation*}
$$

Furthermore we have the flatness condition

$$
\begin{equation*}
d j+j \wedge j=0, \tag{2.15}
\end{equation*}
$$

following from the expression (2.10) of the connection, and the conservation

$$
\begin{equation*}
d * j=0, \tag{2.16}
\end{equation*}
$$

which is equivalent to the equations of motion for both the n and the z field. These two equations follow from the flatness condition for the Lax connection

$$
\begin{equation*}
J(x)=\frac{j+x * j}{1-x^{2}} \tag{2.17}
\end{equation*}
$$

[^3]as can be easily checked by collecting powers of x in $d J(x)+J(x) \wedge J(x)$. The new variable x appearing in (2.17) is a completely arbitrary complex number called spectral parameter. Using this flat connection we can build the monodromy matrix
\[

$$
\begin{equation*}
\Omega(x)=P \exp \int d \sigma J_{\sigma}(x) \tag{2.18}
\end{equation*}
$$

\]

where we integrate over a constant τ worldsheet loop. At this point integrability comes into stage. The connection being flat, the eigenvalues of the monodromy matrix are independent of τ. Since, moreover, they depend on a generic complex number x they define an infinite set of conserved charges. For example, each coefficient in the taylor expansion of the eigenvalues around a particular point x^{*} is a conserved charge. The existence of this large number of conserved charges render the sigma model (at least classically) integrable ${ }^{6}$.

We want to study the algebraic curve construction for this integrable model. This will map each classical string solution to a Riemann surface with precise analytical properties. The study of classical solutions in $A d S_{4} \times C P^{3}$ can then be reduced to the problem of making a catalogue of all Riemann surfaces compatible with prescribed analytical properties.

2.2 The $A d S_{4} \times C P^{3}$ algebraic curve

In this section we study the eigenvalues of the monodromy matrix (2.18). We will first consider purely bosonic solutions and work out the full supercurve in the next section. From (2.17) and (2.17) we see that the flat connection $J(x)$ is explicitly block diagonal and thus the eigenvalues of the monodromy matrix will split into two groups: The eigenvalues coming from the $C P^{3}$ part

$$
\begin{equation*}
\left\{e^{i \tilde{p}_{1}}, \ldots, e^{i \tilde{p}_{4}}\right\} \tag{2.19}
\end{equation*}
$$

and those coming from the diagonalization of the AdS block,

$$
\begin{equation*}
\left\{e^{i \hat{p}_{1}}, \ldots, e^{i \hat{p}_{4}}, 1\right\} \tag{2.20}
\end{equation*}
$$

Moreover, from the fact that each of the blocks in (2.11) is manifestly traceless we get

$$
\begin{equation*}
\tilde{p}_{1}(x)+\cdots+\tilde{p}_{4}(x)=0, \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{p}_{3}(x)+\hat{p}_{2}(x)=0=\hat{p}_{4}(x)+\hat{p}_{1}(x) . \tag{2.22}
\end{equation*}
$$

To find the eigenvalues of the monodromy matrix we solve a polynomial characteristic equation. This defines a algebraic curve for the eigenvalues λ. Thus, the eigenvalues can the thought of as different branches of the same Riemann surfaces with square root cuts uniting the several sheets. For example when crossing a cut \mathcal{C} shared by the eigenvalues $e^{i \hat{p}_{1}}$ and $e^{i \hat{p}_{2}}$ we simply change Riemann sheet,

$$
\begin{equation*}
\left(e^{i \hat{p}_{2}}\right)^{+}-\left(e^{i \hat{p}_{1}}\right)^{-}=0, x \in \mathcal{C} \tag{2.23}
\end{equation*}
$$

[^4]where the superscript \pm indicates the function is evaluated immediately above/below the cut. The quasi-momenta, on the other hand, are the logarithms of the eigenvalues. Thus when crossing the very same cut they will in general also gain an integer multiple of 2π,
\[

$$
\begin{equation*}
\hat{p}_{2}^{+}-\hat{p}_{1}^{-}=2 \pi n, x \in \mathcal{C} . \tag{2.24}
\end{equation*}
$$

\]

Generically we can have several cuts uniting different pairs of sheets and

$$
\begin{equation*}
p_{i}^{+}-p_{j}^{-}=2 \pi n, x \in \mathcal{C}_{i j}, \tag{2.25}
\end{equation*}
$$

on each cut connecting two quasimomenta p_{i} and p_{j}. To parametrize each cut we also introduce the usual filling fractions

$$
\begin{equation*}
\hat{S}_{i j}=\frac{g}{2 \pi i} \oint_{\mathcal{C}_{i j}} d x\left(1-\frac{1}{x^{2}}\right) \hat{p}_{i}(x), \quad \tilde{S}_{i j}=\frac{g}{\pi i} \oint_{\mathcal{C}_{i j}} d x\left(1-\frac{1}{x^{2}}\right) \tilde{p}_{i}(x) \tag{2.26}
\end{equation*}
$$

for the cuts uniting p_{i} and p_{j}. Each cut of the algebraic curve is characterized by a discrete label (i, j), corresponding to the two sheets being united, an integer n, the multiple of 2π mention above, and a real filling fraction. These three quantities are the analogues of the polarization, mode number and amplitude of the flat space Fourier decomposition of a given classical solution.

The study of the analytical properties of the quasi-momenta follows closely the analysis done in the context of the $A d S_{5} / C F T_{4}$ duality in (14. Let us enumerate all these properties and then explain their origin.

For large values of the spectral parameter, the quasimomenta behave as

$$
\begin{align*}
& \left(\hat{p}_{1}, \hat{p}_{2}, \hat{p}_{3}, \hat{p}_{4}\right) \simeq \frac{1}{g x}(L+E, S,-S,-L-E), \tag{2.27}\\
& \left(\tilde{p}_{1}, \tilde{p}_{2}, \tilde{p}_{3}, \tilde{p}_{4}\right) \simeq \frac{1}{2 g x}\left(L-M_{u}, M_{u}-M_{r}, M_{r}-M_{v},-L+M_{v}\right),
\end{align*}
$$

for a state belonging to the $\mathrm{SU}(4)$ representation with Dynkin labels $\left[L-2 M_{u}+M_{r}, M_{u}+\right.$ $\left.M_{v}-2 M_{r}, L-2 M_{v}+M_{r}\right]$ (which should be positive).

There are two simple poles at $x= \pm 1$ which are synchronized between the $A d S_{4}$ and the $C P^{3}$ quasi-momenta,

$$
\begin{equation*}
\left(\hat{p}_{1}, \hat{p}_{2}, \hat{p}_{3}, \hat{p}_{4} ; \tilde{p}_{1}, \tilde{p}_{2}, \tilde{p}_{3}, \tilde{p}_{4}\right) \simeq \frac{1}{x \pm 1}\left(\alpha_{ \pm}, 0,0,-\alpha_{ \pm} ; \frac{\alpha_{ \pm}}{2}, 0,0,-\frac{\alpha_{ \pm}}{2}\right), \tag{2.28}
\end{equation*}
$$

and finally the algebraic surface exhibits a $x \rightarrow 1 / x$ inversion symmetry under which

$$
\begin{array}{ll}
\hat{p}_{1}(1 / x)=-\hat{p}_{1}(x) & \begin{array}{l}
\tilde{p}_{1}(1 / x)=\tilde{p}_{4}(x)+2 \pi m \\
\hat{p}_{2}(1 / x)=+\hat{p}_{2}(x)
\end{array} \\
\hat{p}_{3}(1 / x)=+\hat{p}_{3}(x) \tag{2.29}\\
\hat{p}_{4}(1 / x)=-\hat{p}_{4}(x) & \tilde{p}_{3}(1 / x)=\tilde{p}_{2}(x) \\
\tilde{p}_{4}(1 / x)=\tilde{p}_{1}(x)-2 \pi m
\end{array}
$$

where m is an integer which depends on the classical solution to which these quasi-momenta are associated.

Let us now briefly explain the origin of these analytical properties. The fact that the quasi-momenta encode the global charges of the classical solutions at the $x \rightarrow \infty$ asymptotics follows from the large x behavior of the monodromy matrix,

$$
\begin{equation*}
\Omega(x) \simeq 1+\frac{1}{x} \int d \sigma j_{\tau} . \tag{2.30}
\end{equation*}
$$

From the form of the flat connection we see that in general the quasi-momenta can have simple poles at $x= \pm 1$. The reason why only four of them - two in $C P^{3}$ and two in $A d S_{4}$ - have non-vanishing residues follows from the very particular form of the flat connection. For example for $x \simeq 1$ we have $J(x) \propto j_{+}$and thus

$$
\begin{equation*}
j_{+} \cdot v=0 \tag{2.31}
\end{equation*}
$$

if v is orthogonal to both $z_{I}^{\dagger}, D_{+} z_{I}^{\dagger}, n_{i}$ and $\partial_{+} n_{i}$. Following the arguments in 11, this can be shown to imply that only two $C P^{3}$ and two $A d S_{4}$ quasimomenta have poles. Since (2.21) and (2.22) we immediately see that the residues at these poles must be symmetric. Moreover the Virasoro constraints $\operatorname{STr}\left(j_{\mu}^{2}\right)=0$ synchronizes the poles in the anti de-Sitter and projective space as in (2.28) (exactly as in (13).

Next we notice that $h^{-1}=h$. This has important consequences for the algebraic curve. It implies that

$$
\begin{equation*}
\Omega(x)=h^{-1}(2 \pi) \Omega(1 / x) h(0) \tag{2.32}
\end{equation*}
$$

and therefore the eigenvalues of the monodromy matrix associated to some closed string classical solution are at most exchanged between themselves under the inversion map $x \rightarrow$ $1 / x$. The precise way in which the quasi-momenta are exchanged is in general a subtle business 11, 13] and (2.29) is not a trivial relation. For example, a priori from (2.32) it seems that we could not infer that $\tilde{p}_{2}(1 / x)$ is not exchanged with $\tilde{p}_{3}(x)$. The reason why this can not happen and the inversion symmetry we postulated is correct is the following: There are solutions with $z_{1}, z_{2}, z_{3} \neq 0$ but $z_{4}=0$. For those solutions the last line and column of the current $J(x)$ is made out of zeros. Thus $\Omega(x)$ will have one eigenvalue exactly equal to 1 and therefore one of the quasimomenta is strictly zero. Since \tilde{p}_{1} and \tilde{p}_{4} have poles the vanishing quasimomenta must be either \tilde{p}_{2} or \tilde{p}_{3}. But then, if for example $\tilde{p}_{3}=0$ while the other three quasimomenta are nontrivial then, clearly, $p_{2}(1 / x) \neq p_{3}(x)$! In the same way we can justify the remaining relations in $(2.29)^{7}$.

2.3 Full algebraic supercurve

In this section we generalize the classical bosonic algebraic curve described in the previous section to the semi-classical and supersymmetric $\operatorname{OSp}(2,2 \mid 6)$ algebraic curve. The smallest representation of this symmetry group - which behaves in many aspects as $\mathrm{SO}(10)$ - is $\mathbf{1 0}$

[^5]dimensional so we should find a nice linear combination of the quasimomenta in the previous section yielding $\mathbf{1 0}$ functions describing a single algebraic curve with manifest $\operatorname{OSp}(2,2 \mid 6)$ symmetry. Then, to include fermions, we simply allow for extra poles between the $A d S_{4}$ and the $C P^{3}$ quasimomenta! A proper linear combination is the following reorganization of the quasimomenta into a set of ten functions
\[

$$
\begin{equation*}
\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}=\left\{\frac{\hat{p}_{1}+\hat{p}_{2}}{2}, \frac{\hat{p}_{1}-\hat{p}_{2}}{2}, \tilde{p}_{1}+\tilde{p}_{2}, \tilde{p}_{1}+\tilde{p}_{3}, \tilde{p}_{1}+\tilde{p}_{4}\right\}, \tag{2.33}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\left\{q_{6}, q_{7}, q_{8}, q_{9}, q_{10}\right\}=-\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\} . \tag{2.34}
\end{equation*}
$$

These ten functions can be thought of as the several sheets of a single function taking values in a ten-sheeted Riemann surface as represented in figure 1. Notice that they organize in a nice explicitly $\operatorname{OSp}(2,2 \mid 6)$ symmetric way. From the properties derived in the previous section for $p_{i}(x)$ the relations listed in the introduction for $q_{i}(x)$ follow.

Next, to understand the quasi-classical quantization of any classical solution we add extra pole singularities to the different pairs of sheets of the algebraic curve associated with the solution we want to quantize. The several pairs of sheets to be connected in figure 1 correspond to the different physical polarizations for the quantum fluctuations. Thus, we are in need of a map between the several possible excitations of the string Hilbert space (or of the dual gauge theory) and the several pairs or Riemann surfaces. This map is provided by figure 2 where we listed all $16=8+8$ physical excitations. The fluctuations were identified by the corresponding excitations of the $\operatorname{OSp}(2,2 \mid 6)$ Dynkin diagram, as in [1]. Since the asymptotics of the curve are also be related to the Dynkin labels of a given state this suffices to identify which pairs of sheets are connected for each quantum fluctuation. See [13, [16] for similar analysis in the context of the $A d S_{5} / C F T_{4}$ duality.

In the next section we will explicitly apply figure 2 to the semi-classical quantization of the BMN string.

2.4 BMN string

The BMN point-like string has $z_{1}=\frac{1}{\sqrt{2}} e^{i \omega \tau / 2}, z_{2}=\frac{1}{\sqrt{2}} e^{-i \omega \tau / 2}$ and $n_{1}+i n_{2}=e^{i \omega \tau}$. Computing the charges of this solution we find

$$
\begin{equation*}
L=4 \pi g \omega=\pi \sqrt{2 \lambda} \omega, E=0 \tag{2.35}
\end{equation*}
$$

to check that one can use that the $A d S_{5}$ time is given by $-i \log \left(n_{1}+i n_{2}\right)$. To compare the results we will find below with those in [6] we notice that

$$
\begin{equation*}
\frac{n^{2}}{\omega^{2}}=\frac{2 \pi^{2} \lambda n^{2}}{L^{2}} \tag{2.36}
\end{equation*}
$$

We now plug the embedding coordinates into (2.11) and compute the path ordered exponential in (2.18). Since the string is point-like there is no σ dependence and this computation

Fermions

AdS $_{4}$

Figure 2: The several states in the Hilbert space can be constructed in the usual oscillator representation. There is one oscillator per Dynkin node of the $\operatorname{OSp}(2,2 \mid 6)$ super Dynkin diagram. A light (dark) gray shaded node corresponds to an oscillator excited once (twice). From the ChernSimons Bethe ansatz point of view, the number of times each oscillator is excited is the same as the number of Bethe roots of the corresponding type. Thus, for example, in the notation of [1] , the last fermionic excitation corresponds to a bound state of one root of each type u, v, w, s and two Bethe roots r. From the string point of view fluctuations correspond to poles uniting the several sheets of the algebraic curve. Close to each fluctuation we represented some numbers which indicate which quasi-momenta are united. For example we have $45 / 67$ for the first fluctuation which means q_{4} and q_{5} share a pole. Since (2.34) automatically q_{6} and q_{7} also share a pole.
is trivial. We can then compute the eigenvalues of the monodromy matrix (2.18) and from them we find the $\mathbf{1 0} q_{i}$'s using (2.33) and (2.34). We obtain

$$
\begin{equation*}
q_{1, \ldots, 4}=-q_{6, \ldots, 10}=\frac{2 \pi \omega x}{x^{2}-1} \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{5,6}=0 \tag{2.38}
\end{equation*}
$$

The BMN string is the simplest possible algebraic curve. It is in fact the vacuum curve, all sheets are empty except for the two single poles at $x= \pm 1$.

We can now exemplify the computation of the quasi-classical spectrum in the algebraic curve language and reproduce the recent results of [6]. The 16 physical excitations are represented in figure 2. Notice that the first four $C P^{3}$ fluctuations and the last four
fermionic fluctuations corresponds to poles shared by a quasimomenta in the list (2.37) with one of the two quasimomenta in (2.38). The position of these fluctuations is given by (16]

$$
\begin{equation*}
q_{i}\left(x_{n}\right)-q_{j}\left(x_{n}\right)=2 \pi n . \tag{2.39}
\end{equation*}
$$

The integer n is the generalization of the Fourier mode in flat space - it is meaningful around any classical solution, no matter how non-linear and non-trivial this solution might be. For the fluctuations we are discussing this equation reads

$$
\begin{equation*}
\frac{2 \pi \omega x_{n}}{x_{n}^{2}-1}=2 \pi n \tag{2.40}
\end{equation*}
$$

and we should pick the solution in the physical region $|x|>1$. On the other hand all the remaining eight fluctuations connect two quasimomenta in (2.37). Therefore, from (2.39), we will find that the position of these fluctuations is fixed by

$$
\begin{equation*}
\frac{2 \pi \omega x_{n}}{x_{n}^{2}-1}=\pi n \tag{2.41}
\end{equation*}
$$

So the position of half of the fluctuations is the same as the position of the other half with doubled mode number. This already points towards the structure of the fluctuation energies observed in [6]. We also recall that a fluctuation pole at position y should have a residue (16]

$$
\begin{equation*}
\alpha(y)=\frac{1}{2 g} \frac{y^{2}}{y^{2}-1} . \tag{2.42}
\end{equation*}
$$

We will now consider separately the $C P^{3}, A d S_{4}$ and Fermionic excitations to understand how to compute the fluctuation energies around a classical solution in the algebraic curve formalism. The computations are conceptually as in [16] so we will simply present the results for the perturbed quasi-momenta with very few explanations.

A technical detail: When computing the fluctuation spectrum we will add always a fluctuation with mode number n and another with mode number $-n$ to keep the string total world-sheet momentum zero in the process ${ }^{8}$.

2.4.1 $C P^{3}$ excitations

There are two types of fluctuations in $C P^{3}$: The first four in figure 2 and the fifth one. The former corresponds to a pole connecting a quasi-momenta in (2.37) with an empty one in (2.38) whereas the latter corresponds to a pole shared by q_{3} and q_{7}, both in (2.37). Let us consider one of the fluctuations of the first type, say the first one in figure 2. For this

[^6]fluctuation
\[

$$
\begin{align*}
& \delta q_{3}=-\delta q_{8}=+\sum_{ \pm} \frac{\alpha(1 / x)}{1 / x-x_{ \pm n}} \tag{2.44}\\
& \delta q_{4}=-\delta q_{7}=-\sum_{ \pm} \frac{\alpha(x)}{x-x_{ \pm n}} \tag{2.45}\\
& \delta q_{5}=-\delta q_{6}=+\sum_{ \pm} \frac{\alpha(x)}{x-x_{ \pm n}}+\sum_{ \pm} \frac{\alpha(1 / x)}{1 / x-x_{ \pm n}} \tag{2.46}\\
& \delta q_{1,2}=-\delta q_{9,10}=+\frac{\alpha(x) \delta E}{x} . \tag{2.47}
\end{align*}
$$
\]

so that from the synchronization of poles at $x= \pm 1$ we find

$$
\begin{equation*}
\delta E=\sum_{ \pm} \frac{1}{x_{ \pm n}^{2}-1}=\sum_{ \pm n} \sqrt{\frac{1}{4}+\frac{n^{2}}{\omega^{2}}}-\frac{1}{2} . \tag{2.48}
\end{equation*}
$$

The fifth fluctuation in $C P^{3}$ connects q_{3} and q_{7} (and therefore automatically at $q_{4}=-q_{7}$ and $q_{8}=-q_{3}$). Hence we have

$$
\begin{align*}
\delta q_{4} & =-\delta q_{7}=-\sum_{ \pm} \frac{\alpha(x)}{x-x_{ \pm n}}+\sum_{ \pm} \frac{\alpha(1 / x)}{1 / x-x_{ \pm n}} \tag{2.49}\\
\delta q_{3} & =-\delta q_{8}=-\sum_{ \pm} \frac{\alpha(x)}{x-x_{ \pm n}}+\sum_{ \pm} \frac{\alpha(1 / x)}{1 / x-x_{ \pm n}} \tag{2.50}\\
\delta q_{1,2} & =-\delta q_{9,10}=+\frac{\alpha(x) \delta E}{x} \tag{2.51}
\end{align*}
$$

and we find in this case

$$
\begin{equation*}
\delta E=\sum_{ \pm} \frac{2}{x_{ \pm n}^{2}-1}=\sum_{ \pm n} \sqrt{1+\frac{n^{2}}{\omega^{2}}}-1 . \tag{2.52}
\end{equation*}
$$

These are precisely the results of [6].

2.4.2 $A d S^{4}$ excitations

Here we must be careful. The first and third $A d S^{4}$ fluctuations have two excitations in the last Dynkin node - see figure 2. This means that for those we should double the residue (2.42). Let us consider the last one for illustration (for the first one we get the same result of course). We have

$$
\begin{align*}
& \delta q_{1}=-\delta q_{10}=+\sum_{ \pm} \frac{2 \alpha\left(x_{n}\right)}{x-x_{ \pm n}} \tag{2.53}\\
& \delta q_{2}=-\delta q_{9}=-\sum_{ \pm} \frac{2 \alpha\left(x_{n}\right)}{1 / x-x_{ \pm n}} \tag{2.54}
\end{align*}
$$

and thus, from the large x asymptotics,

$$
\begin{equation*}
\delta E=\sum_{n= \pm} \frac{x_{n}^{2}+1}{x_{n}^{2}-1}=\sum_{ \pm n} \sqrt{1+\frac{n^{2}}{\omega^{2}}} . \tag{2.55}
\end{equation*}
$$

As for the middle fluctuation in figure 2 , we have

$$
\begin{align*}
& \delta q_{1}=-\delta q_{10}=+\sum_{ \pm} \frac{\alpha\left(x_{n}\right)}{x-x_{ \pm n}}-\sum_{ \pm} \frac{\alpha\left(x_{n}\right)}{1 / x-x_{ \pm n}} \tag{2.56}\\
& \delta q_{2}=-\delta q_{9}=+\sum_{ \pm} \frac{\alpha\left(x_{n}\right)}{x-x_{ \pm n}}-\sum_{ \pm} \frac{\alpha\left(x_{n}\right)}{1 / x-x_{ \pm n}} \tag{2.57}
\end{align*}
$$

yielding

$$
\begin{equation*}
\delta E=\sum_{n= \pm} \frac{x_{n}^{2}+1}{x_{n}^{2}-1}=\sum_{ \pm n} \sqrt{1+\frac{n^{2}}{\omega^{2}}} \tag{2.58}
\end{equation*}
$$

which is again the same result as found in [6].

2.4.3 Fermionic excitations

As was the case for the $C P^{3}$ excitations, here we also have two types of fluctuations, corresponding to the first and second lines in figure 2. We start by considering a representative of the first line. For example let us focus on a pole from q_{1} to q_{5} (and thus automatically also from q_{6} to q_{10}). We have

$$
\begin{align*}
\delta q_{1} & =-\delta q_{10}
\end{aligned}=+\sum_{ \pm} \frac{\alpha\left(x_{n}\right)}{x-x_{ \pm n}}, \begin{aligned}
\delta q_{5} & =-\delta q_{6} \tag{2.59}
\end{align*}=-\sum_{ \pm} \frac{\alpha\left(x_{n}\right)}{x-x_{ \pm n}}-\sum_{ \pm} \frac{\alpha\left(x_{n}\right)}{1 / x-x_{ \pm n}}, ~\left(\sum_{ \pm} \frac{\alpha\left(x_{n}\right)}{1 / x-x_{ \pm n}} .\right.
$$

giving

$$
\begin{equation*}
\delta E=\sum_{n= \pm} \frac{x_{n}^{2}+1}{2\left(x_{n}^{2}-1\right)}=\sum_{ \pm n} \sqrt{\frac{1}{4}+\frac{n^{2}}{\omega^{2}}} \tag{2.62}
\end{equation*}
$$

For a fluctuation in the second line, say the last one, we have

$$
\begin{align*}
& \delta q_{1}=-\delta q_{10}=-\sum_{ \pm} \frac{\alpha\left(x_{n}\right)}{x-x_{ \pm n}}-\frac{A x}{2 g\left(x^{2}-1\right)} \tag{2.63}\\
& \delta q_{2}=-\delta q_{9}=+\sum_{ \pm} \frac{\alpha\left(x_{n}\right)}{1 / x-x_{ \pm n}}-\frac{A x}{2 g\left(x^{2}-1\right)} \tag{2.64}\\
& \delta q_{3}=-\delta q_{8}=+\sum_{ \pm} \frac{\alpha(x)}{x-x_{ \pm n}} \tag{2.65}\\
& \delta q_{4}=-\delta q_{7}=-\sum_{ \pm} \frac{\alpha(1 / x)}{1 / x-x_{ \pm n}} \tag{2.66}
\end{align*}
$$

so that pole synchronization gives

$$
\begin{equation*}
A=\sum_{ \pm} \frac{1}{x_{ \pm n}^{2}-1} \tag{2.67}
\end{equation*}
$$

and then from the large x asymptotics we read the energy shift

$$
\begin{equation*}
\delta E=\sum_{ \pm n} \frac{x_{n}^{2}+3}{2\left(x_{n}^{2}-1\right)}=\sum_{ \pm n} \sqrt{1+\frac{n^{2}}{\omega^{2}}}-\frac{1}{2} \tag{2.68}
\end{equation*}
$$

This completes the computation of the spectrum of the superstring around the BMN classical solution. All frequencies coincide with those found in [6].

3. Chern-Simons curve

In this section we construct the CS algebraic curve encoding the full 2-loop spectrum of long single trace gauge invariant operators in the ABJM Chern Simons theory. In the scaling limit where the Bethe roots scale with the number of spin chain sites, the two loop Bethe equations in (1) can be recast as (9, (12), (14)

$$
\begin{align*}
\frac{1}{z}+2 \pi n_{u} & =2 G_{u}-G_{r} \tag{3.1}\\
\frac{1}{z}+2 \pi n_{v} & =2 G_{v}-G_{r} \tag{3.2}\\
2 \pi n_{r} & =2 G_{r}-G_{v}-G_{u}-G_{w} \tag{3.3}\\
2 \pi n_{w} & =G_{r}-G_{s} \tag{3.4}\\
2 \pi n_{w} & =2 G_{w}-G_{s} \tag{3.5}
\end{align*}
$$

In these five equations z belongs to the several disjoint supports where the Bethe roots u, v, r, s, w condense, respectively. As usual

$$
\begin{equation*}
G_{u}=\sum_{j=1}^{M_{u}} \frac{1}{L z-u_{j}}, \quad G_{v}=\sum_{j=1}^{M_{v}} \frac{1}{L z-v_{j}}, \ldots \tag{3.6}
\end{equation*}
$$

and the slash means the average of function above and below the cut resulting from the condensation of the Bethe roots. In this limit the spin chain can be described by a (super symmetric) Landau-Lifshitz model and the corresponding algebraic curve can be compared with the curve described in the previous section. Indeed all the 5 nested Bethe equations nested can be turned into the statement that the quasimomenta

$$
\begin{array}{lrl}
q_{1} & =-q_{10} & =\frac{1}{z}-G_{w} \\
q_{2} & =-q_{9} & =\frac{1}{z}+G_{w}-G_{s} \\
q_{3} & =-q_{8} & =\frac{1}{z} \tag{3.7}\\
q_{4} & =-G_{s}+G_{r} & \\
q_{5} & =\frac{1}{z} & -G_{r}+G_{u}+G_{v} \\
& = & -G_{u}+G_{v}
\end{array}
$$

form a ten-sheeted Riemann surface. The several properties of these quasimomenta follow trivially from the definition of the quasimomenta, see [9-14]. This curve can be depicted
as in figure 1 provided we shrink the unit circle into the origin. The energy of the YM solutions is then given by

$$
\begin{equation*}
E=\sum_{i=1}^{M_{u}} \frac{\lambda^{2}}{u_{i}^{2}}+\sum_{i=1}^{M_{v}} \frac{\lambda^{2}}{v_{i}^{2}} . \tag{3.8}
\end{equation*}
$$

Acknowledgments

We would like to thank J. Minahan and K. Zarembo for many useful discussions, for introducing us to the subject of integrability in the $A d S_{4} / C F T_{3}$ duality and for collaboration in earlier stages of this project. We are also grateful to V. Kazakov, I. Kostov, D. Serban and I. Shenderovich for useful comments. PV is funded by the Fundação para a Ciência e Tecnologia fellowship SFRH/BD/17959/2004/0WA9. NG was partially supported by RSGSS-1124.2003.2, by RFFI project grant 06-02-16786 and ANR grant INT-AdS/CFT (contract ANR36ADSCSTZ). A part of this work was done during NG's stay at Les Houches Summer School, which he thanks for hospitality

References

[1] J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 arXiv:0806.3951.
[2] J.A. Minahan and K. Zarembo, The Bethe-ansatz for $N=4$ super Yang-Mills, JHEP 03 (2003) 013 hep-th/0212208.
[3] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, $N=6$ superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 arXiv:0806.1218.
[4] J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078 hep-th/0411077;
J. Bagger and N. Lambert, Modeling multiple M2's, Phys. Rev. D 75 (2007) 045020 hep-th/0611108;
D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, JHEP 08 (2007) 056 arXiv:0704.374d;
A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 arXiv:0709.1260;
J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 arXiv:0711.0955; Comments on multiple M2-branes, JHEP 02 (2008) 105 arXiv: 0712.3738 ;
M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M2-branes, JHEP 05 (2008) 105 arXiv:0803.3803;
J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, M2-branes on M-folds, JHEP 05 (2008) 038 arXiv:0804.1256;
P.-M. Ho, Y. Imamura and Y. Matsuo, M2 to D2 revisited, JHEP 07 (2008) 003 arXiv:0805.1202;
J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, Supersymmetric Yang-Mills theory from lorentzian three-algebras, JHEP 08 (2008) 094 arXiv:0806.0738).
[5] M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories and $A d S_{4} / C F T_{3}$ correspondence, JHEP 09 (2008) 072 arXiv:0806.1519;
B. Ezhuthachan, S. Mukhi and C. Papageorgakis, D2 to D2, JHEP 07 (2008) 041 arXiv:0806.1639;
S. Cecotti and A. Sen, Coulomb branch of the lorentzian three algebra theory, arXiv:0806.1999;
A. Mauri and A.C. Petkou, An $N=1$ superfield action for $M 2$ branes, Phys. Lett. B 666 (2008) 527 arXiv:0806.2270;
E.A. Bergshoeff, M. de Roo, O. Hohm and D. Roest, Multiple membranes from gauged supergravity, JHEP 08 (2008) 091 arXiv:0806.2584;
P. de Medeiros, J.M. Figueroa-O'Farrill and E. Mendez-Escobar, Metric Lie 3-algebras in Bagger-Lambert theory, JHEP 08 (2008) 045 arXiv:0806.3242;
J. Bhattacharya and S. Minwalla, Superconformal indices for $\mathcal{N}=6$ Chern Simons theories, arXiv:0806.3251;
M. Blau and M. O'Loughlin, Multiple M2-branes and plane waves, JHEP 09 (2008) 112 arXiv:0806.3253;
Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, Scaling limit of $N=6$ superconformal

Chern-Simons theories and lorentzian Bagger-Lambert theories, Phys. Rev. D 78 (2008) 105011 arXiv:0806.3498;
Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell- Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 arXiv:0806.3727;
A. Armoni and A. Naqvi, A non-supersymmetric large-N 3D CFT and its gravity dual, JHEP 09 (2008) 119 arXiv:0806.4068;
A. Hanany, N. Mekareeya and A. Zaffaroni, Partition functions for membrane theories, JHEP 09 (2008) 090 arXiv:0806.4212;
A. Agarwal, Mass deformations of super Yang-Mills theories in $D=2+1$ and super-membranes: a note, arXiv:0806.4292;
C. Ahn, Towards holographic gravity dual of $N=1$ superconformal Chern-Simons gauge theory, JHEP 07 (2008) 101 arXiv:0806.4807;
J. Bedford and D. Berman, A note on quantum aspects of multiple membranes, Phys. Lett. B 668 (2008) 67 arXiv:0806.4900;
K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, $N=5,6$ superconformal Chern-Simons theories and M2-branes on orbifolds, JHEP 09 (2008) 002 arXiv:0806.4977;
P. Fré and P.A. Grassi, Pure spinor formalism for $\operatorname{Osp}(N \mid 4)$ backgrounds, arXiv:0807.0044;
K. Okuyama, Linear σ-models for the R^{8} / Z_{k} orbifold, Phys. Lett. B 668 (2008) 153 arXiv:0807.0047;
N. Beisert, The $\mathrm{SU}(2 \mid 3)$ undynamic spin chain, arXiv:0807.0099;
J. Bagger and N. Lambert, Three-algebras and $N=6$ Chern-Simons gauge theories, Phys.

Rev. D 79 (2009) 025002 arXiv:0807.0163;
S. Terashima, On M5-branes in $N=6$ membrane action, JHEP 08 (2008) 080 arXiv:0807.0197;
G. Grignani, T. Harmark, M. Orselli and G.W. Semenoff, Finite size Giant Magnons in the string dual of $N=6$ superconformal Chern-Simons theory, JHEP 12 (2008) 008 arXiv:0807.0205.
[6] T. Nishioka and T. Takayanagi, On type IIA Penrose limit and $N=6$ Chern-Simons theories, JHEP 08 (2008) 001 arXiv: 0806.3391;
D. Gaiotto, S. Giombi and X. Yin, Spin chains in $N=6$ superconformal Chern-Simons-matter theory, arXiv:0806.4589;
G. Grignani, T. Harmark and M. Orselli, The $\mathrm{SU}(2) \times \mathrm{SU}(2)$ sector in the string dual of $N=6$ superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115 arXiv:0806.4959.
[7] B.j. Stefanski, Green-Schwarz action for type IIA strings on $A d S_{4} \times C P^{3}$, Nucl. Phys. B 808 (2009) 80 arXiv:0806.4948.
[8] G. Arutyunov and S. Frolov, Superstrings on $A d S_{4} \times C P^{3}$ as a coset σ-model, JHEP 09 (2008) 129 arXiv:0806.494d.
[9] V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 hep-th/0402207.
[10] V.A. Kazakov and K. Zarembo, Classical/quantum integrability in non-compact sector of $A d S / C F T$, JHEP 10 (2004) 060 hep-th/0410105.
[11] N. Beisert, V.A. Kazakov and K. Sakai, Algebraic curve for the $\mathrm{SO}(6)$ sector of $A d S / C F T$, Commun. Math. Phys. 263 (2006) 611 hep-th/0410253].
[12] S. Schäfer-Nameki, The algebraic curve of 1-loop planar $N=4$ SYM, Nucl. Phys. B 714 (2005) 3 hep-th/0412254.
[13] N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, The algebraic curve of classical superstrings on $A d S_{5} \times S^{5}$, Commun. Math. Phys. 263 (2006) 659 hep-th/0502226.
[14] N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, Complete spectrum of long operators in $N=4$ SYM at one loop, JHEP 07 (2005) 030 hep-th/0503200.
[15] I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the $\operatorname{Ad} S_{5} \times S^{5}$ superstring, Phys. Rev. D 69 (2004) 046002 hep-th/0305116.
[16] N. Gromov and P. Vieira, The $A d S_{5} \times S^{5}$ superstring quantum spectrum from the algebraic curve, Nucl. Phys. B 789 (2008) 175 hep-th/0703191.
[17] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from $N=4$ super Yang-Mills, JHEP 04 (2002) 013 hep-th/0202021.
[18] N. Gromov and P. Vieira, Constructing the AdS/CFT dressing factor, Nucl. Phys. B 790 (2008) 72 hep-th/0703266; Complete 1-loop test of AdS/CFT, JHEP 04 (2008) 046 arXiv:0709.3487];
N. Gromov, S. Schäfer-Nameki and P. Vieira, Quantum wrapped giant magnon, Phys. Rev. D 78 (2008) 026006 arXiv:0801.3671.
[19] N. Beisert, The complete one-loop dilatation operator of $N=4$ super Yang-Mills theory, Nucl. Phys. B 676 (2004) 3 hep-th/0307015;
N. Beisert, J.A. Minahan, M. Staudacher and K. Zarembo, Stringing spins and spinning strings, JHEP 09 (2003) 010 hep-th/0306139;
N. Beisert and M. Staudacher, The $N=4$ SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 hep-th/0307042;
N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of $N=4$ super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 hep-th/0303060; A novel long range spin chain and planar $N=4$ super Yang-Mills, JHEP 07 (2004) 075 hep-th/0405001];
M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054
hep-th/0412188;
G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 hep-th/0406256;
N. Beisert and M. Staudacher, Long-range $\operatorname{PSU}(2,2 \mid 4)$ Bethe ansaetze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 hep-th/0504190;
N. Beisert, The SU(2|3) dynamic spin chain, Nucl. Phys. B 682 (2004) 487 hep-th/0310252;
N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.
(2007) P01021 hep-th/0610251;
N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for $\operatorname{Ad} S_{5} \times S^{5}$ strings, JHEP 11 (2006) 070 hep-th/0609044.

[^0]: ${ }^{1}$ For some matrices, such as for example elements of $\mathrm{SO}(2 N+1)$, some eigenvalues might be trivial.
 ${ }^{2}$ Actually as will become clear latter the quasi-momenta define an infinite genus curve and to obtain a ten-sheeted Riemann surface we should take for example the derivative of this quasimomenta w.r.t. x.

[^1]: ${ }^{3}$ The state labeled by $\left(M_{u}, M_{r}, M_{v}\right)$ belongs to the $\mathrm{SU}(4)$ representation with Dynkin labels $\left[L-2 M_{u}+\right.$ $\left.M_{r}, M_{u}+M_{v}-2 M_{r}, L-2 M_{v}+M_{r}\right]$

[^2]: ${ }^{4}$ Of course, if we would proceed as in 14 using the full flat connection in 7, 8) we would find exactly the same results, as can be easily checked.

[^3]: ${ }^{5}$ This definition is motivated by the relations between quadratic Casimirs for $\mathrm{SO}(5), S p(4)$ and $\mathrm{SU}(4), \mathrm{SO}(6)$

 $$
 \operatorname{Tr}_{\mathrm{SO}(5)}\left(j^{2}\right)=2 \operatorname{Tr}_{\mathrm{Sp}(4)}\left(j^{2}\right), \quad \operatorname{Tr}_{\mathrm{SU}(4)}\left(j^{2}\right)=\frac{1}{2} \operatorname{Tr}_{\mathrm{SO}(6)}\left(j^{2}\right)
 $$

[^4]: ${ }^{6}$ Quantum integrability is of course a more subtle matter. In particular, a quantum anomaly for the bosonic $C P^{3}$ sigma-model is known to exist and break down integrability for this theory. In any case, we will consider the semi-classical quantization of the full super-string where supersymmetry will most likely ensure integrability at the quantum level.

[^5]: ${ }^{7}$ As we mentioned in the beginning we could also have constructed the curve using the flat connection in [7, 8]. The $x \rightarrow 1 / x$ symmetry we just discussed appears in these works as a consequence of the \mathbb{Z}_{4} grading of the superalgebra (see equation at the end of section 4.1 in 8). In the context of the $A d S_{5} \times C F T_{4}$ correspondence - see - this was also the case. Had we used the flat connections in these works and we would have found the same inversion symmetry properties.

[^6]: ${ }^{8} \mathrm{We}$ could alternatively excite all polarizations at the same time while obeying the level matching condition

 $$
 \begin{equation*}
 \sum_{i j, n} n N_{n}^{i j}=0, \tag{2.43}
 \end{equation*}
 $$

 with $N_{n}^{i j}$ being the number of fluctuations with polarization (i, j) and mode number n. This would lead to the same results but would cluster our expressions. Thus we will chose to add always a single pair of fluctuations with mode numbers $\pm n$ at a time.

